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Angular dynamical spectra. A new method for
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Department of Astronomy, University of Athens, Panepistimiopolis, 157 84-Athens, Greece

Received 17 July 1997

Abstract. We define the invariant spectra of rotation angles and twist angles (angular dynamical
spectra) and study the properties of their moments (angular moments) in a model two-dimensional
map. The angular moments give the main frequencies of the orbits. A main frequency is defined
both for a regular and chaotic orbit. For KAM curves around a centre this frequency corresponds
to the rotation number. Inside islands of stability, we obtain both the main frequency (rotation
number) and the ‘epicyclic frequency’. A fast detection of thin chaotic layers is obtained on
the basis of the behaviour of the frequency curve. We explore the resonant structure near a
last KAM boundary. The secondary islands of various multiplicities, forming Farey sequences,
and the noble tori between them are located. We find a criterion to determine whether various
resonant chaotic zones communicate, or are separated by invariant tori.

1. Introduction

The invariant spectra of dynamical systems (dynamical spectra) were introduced in two
recent papers (Voglis and Contopoulos 1994, Contopoulos and Voglis 1997). These spectra
can serve as powerful diagnostic tools in dynamical systems. Several of their applications
were developed in the above papers and a series of subsequent papers (Contopouloset al
1995, Contopoulos and Voglis 1996, Contopouloset al 1997, Vogliset al 1997).

In this paper a new method is presented as a direct application of the dynamical spectra,
that makes possible, in a single run, the determination of the main frequencies of particular
orbits, the detection of thin chaotic layers, and the location of cantori in various regions
of phase space. This method is based on the calculation of spectra ofrotation anglesand
twist angles, which will be briefly referred to as theangular spectra(definitions given in
section 2). These spectra have an invariant character. The first spectral moments, called the
angular moments, can be defined not only for regular orbits, but also for chaotic orbits. In
the case of regular orbits, the angular moments give the rotation numbers of the orbits. In
the case of chaotic orbits, they give a constant value in a connected chaotic domain defining
a frequency characteristic of the whole domain (section 3). A fast detection of even very
thin chaotic zones can be obtained, as demonstrated by numerical examples (section 4).
Then we focus on the study of the phase-space structure near the last KAM boundary of an
island of stability, where the method can be efficiently implemented (section 5). The stable
periodic orbits of high multiplicities with rotation numbers truncations of noble numbers,
their islands of stability and the noble tori between these islands are located. The destruction
of a given noble torus (and the formation of a cantorus) is marked by the equalization of
the angular moments of the chaotic zones on both sides of the cantorus. In summary, the
method is suitable for exploring the overall phase-space structure. This structure is the
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cause of dynamical phenomena as, for example, the phenomenon of ‘stickiness’ and the
slow diffusion of chaotic orbits.

2. Definition of the method

Consider a two-dimensional symplectic map of the form:

xi+1 = F(xi, yi, a)
yi+1 = G(xi, yi, a)

(1)

wherea is a nonlinearity control parameter. Let(x0, y0) be a period-1 fixed point of the
map (1). LetR̄i be the position vector of the point(xi, yi) with respect to(x0, y0). The
rotation angleθi will be defined as the angle between the two successive vectorsR̄i and
R̄i+1. We denote this angle asθi ≡ ang(R̄i, R̄i+1).

The anglesθi can be defined in various intervals of the form [θ0, θ0+2π). However, as
we explain later, only some intervals are appropriate in order to avoid an unwanted constant
multiple of 2π that may appear in the numerical calculations.

The spectrum of the rotation anglesS(θ) is the distribution of these angles, namely:

S(θ) = dN(θ)

N dθ
(2)

that is, the number dN(θ) of values ofθ in the small interval(θ , θ +dθ) afterN iterations.
For given initial conditions andN large enough, the spectrumS(θ) is invariant along

an orbit, regular or chaotic. For example, in figures 1(a) and (b), the spectraS(θ)
are shown for two orbits with initial conditions(xin, yin) = (0.5, 0.604 64) (regular) and
(xin, yin) = (1.5, 1.813 92) (chaotic), in the well-studied standard map:

xi+1 = xi + a sin(xi + yi) (x, y) ∈ (−π, π ] mod(2π)

yi+1 = xi + yi
(3)

for a = −1.3 (the anglesθ are expressed in degrees rather than radians). The full curves
in figures 1(a) and (b) are the spectraS(θ) for the first 106 iterations of the regular and
chaotic orbits respectively, and both spectra coincide with the spectra of the same orbits for
the next 106 iterations (dots). Thus, the spectrumS(θ) is invariant along the same orbit.

Furthermore, (a) in the case of regular orbits the spectrumS(θ) is invariant with respect
to the initial conditions on the same invariant curve and (b) in the case of chaotic orbits the
spectrumS(θ) is invariant with respect to the initial conditions in the same chaotic domain
(Contopoulos and Voglis 1997, Contopouloset al 1997).

Given the invariance of the spectrumS(θ) along an orbit, one can define the first angular
momentνθ of the orbit as follows

νθ = 1

2π

∮
S(θ)θ dθ. (4)

The momentνθ converges to a fixed value as the number of iterations increases. In
fact, the fractional error1νθ/νθ is reduced proportionally to 1/N , as shown, for example,
in figures 1(c) and (d) for the moments of the spectra of figures 1(a) and (b) respectively.

In equation (4) we use the symbol of a closed integration with respect to the anglesθ ,
without specifying the limits, because these limits change depending on the choice of the
interval [θ0, θ0 + 2π) of definition of θ . In order to evaluate the correctνθ , the interval
[θ0, θ0+2π) must be such that the spectrumS(θ) within this interval has no discontinuities
due to the modulo2π . To clarify this point, consider the spectra of figures 1(a) and (b).
The spectrum 1(a) is continuous and all the anglesθ belong to the interval [0, 180◦].
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Figure 1. The spectrumS(θ) for the first 106 iterations (full curve) and for the next 106 iterations
(dots) of (a) a regular orbit (initial conditionsx = 0.5, y = 0.604 64) and (b) a chaotic orbit
(initial conditionsx = 1.5, y = 1.813 920) in the standard map (5) fora = −1.3. (c), (d) The
rates of convergence of the angular momentsνθ of the spectra (a) and (b) respectively.

On the other hand, the spectrum 1(b) is discontinuous, namely it has two parts separated
by one gap. We call the area under the curveS(θ) ‘spectral mass’. A spectral mass
m1 ≈ 70% is distributed in the interval [0, θ1

∼= 80◦] while the restm2 ≈ 30% is distributed
in the interval [θ2

∼= 140◦, θ3
∼= 300◦]. This sort of discontinuity is a real property of

the spectrum, i.e. it will continue to exist independently of the choice of the interval of
definition of θ . However, an improper choice of the interval ofθ can produce one more
‘splitting’ of the spectrum, not real but only due to modulo 2π . For example, if we choose
θ ∈ (−180◦, 180◦], then the spectral massm2 is now split into two disjoint parts in the
intervals [140◦, 180◦] and [−180◦ = 180◦ − 360◦,−60◦ = 300◦ − 360◦], and the spectrum
now has three disjoint parts in total, showing an apparent discontinuity atθ = ±180◦. If
we calculateνθ from equation (4) withθ ∈ [0◦, 360◦), we obtain the correct value, while if
we adoptedθ ∈ [−180◦, 180◦] we would obtain a different valueν ′θ < νθ due only to the
splitting of the spectrum produced by the 2π modulo.

It is possible to overcome the ambiguity due to a 2π− modulo if we define an ‘extended
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spectrum’Sext(θ) in the interval [−2π, 2π) by the formula:

Sext(θ) =
{
S(θ) 0< θ 6 2π

S(θ + 2π) −2π < θ 6 0.
(5)

In the extended spectrumSext(θ) there is at least one subinterval [θ0, 2π+θ0) containing
one full spectral mass (m = 1) without 2π− modulo discontinuities (while there may be real
discontinuities). Thus, we choose this subinterval [θ0, 2π+θ0) as the interval of integration
in equation (4). If the resulting spectral momentνθ is negative we add 1 to obtainνθ in the
positive interval [0, 1).

For a regular orbit, the mean valueνθ defined as above corresponds to the rotation
number of the orbit. More precisely: (a) for an orbit forming an invariant curve around
(x0, y0), the mean valueνθ is equal to the rotation number for this curve, and (b) for
an orbit inside higher-order islands around(x0, y0), the mean valueνθ is equal to the
rotation number of the stable periodic orbit corresponding to these islands, i.e. a rational
number.

On the other hand, it is remarkable that, due to the invariance of the spectrumS(θ),
a mean valueνθ can also be defined for the chaotic orbits filling zones around(x0, y0)

(while the rotation number of a chaotic orbit cannot be defined). Furthermore, the
mean valueνθ is the same for all the chaotic orbits belonging to one connected chaotic
domain, because the spectrumS(θ) is invariant with respect to the initial conditions in
the same connected chaotic domain. Thus, the mean valueνθ of any orbit inside a
connected chaotic domain defines a mean angle of rotation 2πνθ characteristic of this
domain. Note that, for the reasons explained in Contopoulos and Voglis (1996), the usual
ergodic theorem cannot guarantee the invariance of the spectra of chaotic orbits that we find
empirically.

Nevertheless, a fundamental difficulty with the use of the anglesθ and of their spectra
is that their definition requires a particular choice of centre. For example, consider an orbit
inside a higher-order island. If we wish to know the higher-order rotation number of the
orbit around the stable periodic orbit of this island, then we must change centre and use
the position of that particular stable periodic orbit as the local centre. Furthermore, in some
cases, it may not be possible at all to define an obvious centre around which the rotation
number is unique. This applies, for example, in many cases of irregular periodic orbits
which do not bifurcate from a central periodic orbit, and, therefore, they do not define an
obvious centre (Contopoulos 1970, Contopouloset al 1996).

We now present a method to calculate a mean rotation number for any orbit without the
need of defining any centre at all. For the map (1), the corresponding linearized map has
the form:

dxi+1 = ∂F

∂xi
dxi + ∂F

∂yi
dyi

dyi+1 = ∂G

∂xi
dxi + ∂G

∂yi
dyi.

(6)

We define the ‘twist’ angleφi as the angle by which the infinitesimal vectorξ̄i ≡ (dxi, dyi)
rotates in order to find the direction ofξ̄i+1 ≡ (dxi+1, dyi+1). Namely,φi ≡ ang(ξ̄i , ξ̄i+1).

All the definitions given above regarding the rotation anglesθ , the spectraS(θ), Sext(θ)

and the first momentsνθ can be extended in the same way to the twist anglesφ, the spectra
S(φ), Sext(φ) and the first momentsνφ .

The spectrumS(φ) has the same invariance and convergence properties as the spectrum
S(θ). For example, in figures 2(a) and (b) we have the spectraS(φ) for the first 106



Angular dynamical spectra 2917

Figure 2. Same as in figure 1 for the spectraS(φ) of a regular and chaotic orbit (a), (b) and
the rates of convergence of the respective angular moments (c), (d).

iterations (full curves) and for the next 106 iterations (dots) of the same orbits as in
figures 1(a) and (b). Similarly, in figures 2(c) and (d) we plot the fractional error1νφ/νφ
which is proportional to 1/N .

The invariance of the spectrumS(φ) and the uniqueness of its first momentνφ are due
to the fact that, independently on the initial slope of the infinitesimal vectorξ̄0 = (dx0, dy0),
the subsequent vectorsξ̄i , except the first few transient ones, tend to a unique sequence of
slopes. In particular: (a) for a regular orbit on an invariant curve the vectorξ̄ tends to
become tangent to the invariant curve, and (b) for a chaotic orbit the vectorξ̄ tends to
become tangent to the unstable asymptotic curve of the simplest unstable periodic orbit
(Contopoulos and Voglis 1997).

The use of the twist anglesφ and momentsνφ has the advantage that no knowledge
of any centre is needed for their calculation. Only the evaluation of the linearized map
is required. We now show (a) how the momentsνφ of regular orbits are related to the
rotation numbers of the orbits, and (b) how they can be used to locate even very thin
chaotic layers.
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Figure 3. The phase portrait of the standard map fora = −1.3.

3. Determination of the rotation numbers

The phase portrait of the standard map (equation (4)) fora = −1.3 looks as in figure 3.
The natural centre for this map is the period-1 fixed pointx0 = 0, y0 = 0. This point
is surrounded by invariant curves and by a large chaotic sea. A 6-island chain and an
8-island chain are visible while smaller island chains exist close to the boundary separating
the regular from the chaotic domain.

A line of initial conditionsy = λx is taken from the centre outwards, withλ = y6/x6,
wherey6 = 0.777 07,x6 = 0.642 59 is one of the period 6 stable fixed points. This line
joins the centres(0, 0) and(x6, y6), crossing one of the islands16, while it also crosses one
of the islands1

7 and 1
8 further out. Initial conditions in steps of1x = 10−4 are taken along

the liney = λx. The orbits are integrated forN = 16 384 iterations each and the moments
νθ andνφ for the same number of iterations are evaluated.

The curvesνθ (x) and νφ(x) are plotted in figures 4(a) and (c) respectively, while a
curvef (x) giving the fundamental frequency of a fast Fourier transform on each orbit is
shown in figure 4(b). Finally, in figure 4(d) all these curves are plotted together.

The curvesνθ (x) andf (x) both have the typical behaviour of the fundamental frequency
(or rotation number) curve (Contopoulos 1966, Laskar 1992). Namely, the crossing of KAM
curves around(0, 0) corresponds to a smooth variation ofνθ (x), while the crossing of an
island of stability corresponds to a ‘plateau’ inνθ (x) at the value equal to the rotation
number of the island’s stable periodic orbit. Finally, a chaotic domain corresponds to
non-monotonic variations ofνθ (x), which, however, converges to a constant value in the
connected chaotic domain when the number of iterations becomes larger. The curvesνθ (x)

andf (x) coincide to an accuracy of O(1/N).
Consider now the curveνφ(x). This curve has a parallel evolution to the curveνθ (x) in

the region of smooth KAM curves around(0, 0). However, inside an island chain of higher
multiplicity, the curveνφ(x) does not give a plateau. Instead, it takes a ‘U’ shape. We
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Figure 4. The curves (a) νθ (x), (b) f (x), (c) νφ(x) and (d) a, b, c superposed, along the line
y = λx, with λ = y6/x6 is the slope of the line joining the centre(0, 0) with one of the period
6 stable fixed points(x6 = 0.642 59, y = 0.777 07).

show that this ‘U’ shape corresponds to the form of the curve of the ‘epicyclic’ frequency,
that is the frequencyνκ(x) or the rotation number around the local centres (the stable fixed
points of higher multiplicity) of the islands. More precisely, we show that:

νφ = νθ (7)
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for KAM curves surrounding the central fixed point(0, 0), and

νφ = νθ − νκ νθ = n/m (8)

for orbits inside islands of rotation numbern/m.
Equations (7) and (8) express the following facts. (a) In the case of invariant curves

around the main centre, the number of revolutions per unit time accomplished by the vector
ξ̄ around its starting point must be equal to the number of revolutions accomplished by
this point around the main centre. (b) In the case of ‘epicyclic’ invariant curves (inside
higher-order islands), the number of revolutions per unit time accomplished by the vector
ξ around its starting point must be equal to the number of revolutions accomplished by the
guiding centre (the island’s central stable periodic orbit) around the main centre minus the
number of revolutions of the starting point ofξ̄ around the guiding centre.

3.1. Case 1: Invariant curves around the central point

In order to show equation (7), we define the angleUi = ang(ξ̄i , R̄i). Then we define two
differences:

vi = Ui+1− Ui (without modulo)

and

ui = Ui+1− Ui mod(2π), u ∈ (−π, π ].

The spectraS(v) andS(u) as well as their momentsνv andνu can be defined in the same
way as the spectra and the moments of the other angles and they have the same invariant
properties.

The following equation holds:

ang(R̄i, R̄i+1) = ang(R̄i, ξ̄i )+ ang(ξ̄i , ξ̄i+1)+ ang(ξ̄i+1, R̄i+1) (mod 2π) (9)

or

θi = φi + vi + 2πbi = φi + ui (10)

where the term 2πbi , bi = −1, 0, 1 accounts for the modulo in equation (9). If we take the
mean values on both sides of equation (10), whereνφ is calculated through the extended
spectrumSext(φ), then the following equation holds:

νθ = νφ + νu. (11)

The time evolution of the momentsνθ , νφ and νu for an invariant curve around the
centre (0, 0) (initial conditions x = 0.5, y = 0.604 64) is shown in figure 5(a). It is
observed thatνu tends to zero as the number of iterations increases. Thatνu must tend
to 0 asN → ∞ can be shown as follows. Since, after a few transient iterations, the
infinitesimal vectorξ̄ becomes tangent to the invariant curve, the sequence of the angles
Ui formed by the vectors̄ξ andR̄ is unique, except for the first few ones. Once the vector
ξ̄ becomes tangent to the curve, the endpoint ofξ̄ also tends to be a point of the curve.
As a result,all the anglesUi fall into only one of the two subintervals [0, π ] or (−π, 0]
of the interval(−π, π ] (depending on whether the ending point of the initialξ̄ is inside
or outside the invariant curve). Then, the two anglesui and vi are always equal. This
means that the sum

∑N
i=1 ui is identical to the sum

∑N
i=1 vi and equal toUN − U1. This

sum remains always in the interval(−π, π ] (figure 5(b)). It follows that the mean value
νu ≡ 1

2πN

∑N
i=1 ui = 1

2π

∮
S(u)u du tends to zeroνu → 0 asN → ∞. Thus, we obtain

νθ = νφ (equation (7)) while the approximation ofνθ by νφ afterN iterations is of O(1/N).
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Figure 5. (a) The time evolution of the momentsνθ , νφ , andνu for a regular orbit around(0, 0)
(initial conditionsx = 0.5, y = 0), (b) the identical time evolution of the two sums

∑N
i=1 ui

(full) and
∑N
i=1 vi (dots).

Figure 6. (a) The time evolution of the momentsνθ , νφ , andνu for a regular ‘epicyclic’ orbit
inside the 1

6 island (initial conditionsx = 0.64, y = 0.773 94), (b) the time evolution of the

two sums
∑N
i=1 ui and

∑N
i=1 vi .

3.2. Case 2: Invariant curves inside higher-order islands

Next we consider invariant curvesinside higher-order islandsof a certain multiplicity around
(0, 0). Such invariant curves will be called ‘epicycles’. For the epicycles, the momentνu
does not tend to zero asN →∞. For example, in figure 6(a) we have the evolution of the
momentsνu, νθ andνφ for a regular orbit with initial conditionsx = 0.64, y = 0.773 94,
inside one of the1

6 islands of figure 1. We observe that the momentνu converges to a limiting
value different from zero. This behaviour ofνu can be interpreted if we examine again the
evolution of the sums

∑N
i=1 ui ≡ 2πNνu and

∑N
i=1 vi = UN−U1 with N (figure 6(b)). The

two sums are no longer equal. The evolution of the
∑N

i=1 vi is characterized by a number
of jumps of length 2π . A jump of this kind occurs each time the differencevi = Ui+1−Ui
is outside the interval(−π, π ]. This happens when the starting point of the vectorξ crosses
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one of the tangent lines from the centre(0, 0) to the epicycles. Such a crossing occurs only
once per cycle of epicyclic motion (around the local island’s centres). If we havek jumps
afterN iterations, then the ratiok/N is equal to the epicyclic frequencyνκ = k/N . At each
jump, the difference between the two sums

∑N
i=1 ui and

∑N
i=1 vi increases by 2π . Thus,

after k jumps we have:
N∑
i=1

ui =
N∑
i=1

vi + 2πk (12)

or

νu = UN − U1

2πN
+ k/N = νv + νκ . (13)

Since, asN →∞, νv → 0, we obtainνu→ νκ , while the actual approximation ofνκ by νu
is of O(1/N). Thus, we obtainνθ = νφ + νκ (equation (8)). We haveνφ < νθ because the
sense of rotation of the ‘epicycle’ is opposite to the sense of rotation of the main cycle of
motion around(0, 0). Thus the epicyclic frequencyνκ must be substracted from the main
frequencyνθ to obtain the frequencyνφ of rotation of the vector̄ξ .

The fact thatνu→ νκ allows us to find the frequencyνκ without the need to know the
centres of the islands, which are periodic orbits of possibly high multiplicities. Namely, (a)
we integrate the orbit and the linearized map, and (b) we evaluate the first momentsνφ and
νu. Then,νu → νκ . Alternatively, we can calculateνκ = k/N by counting the number of
jumpsk of the function

∑N
i=1 vi afterN iterations. If we addνu to νφ we obtain alsoνθ .

In this caseνθ is equal (within the numerical accuracy) to a rational numbern/m, i.e. the
rotation number of the fixed points of the islands.

With similar arguments, equation (8) can be generalized in the case of invariant curves
inside islands within islands. In this case, we obtain the frequency of revolution of the
vector ξ̄ as a combination of the frequencyνθ of motion around the main centre and the
‘epicyclic frequencies’νκi around the local centres of successively higher orders. Namely,
we have:

νφ = νθ − νκ1+ νκ2− νκ3+ · · · . (14)

In the above method, besides avoiding the calculation of the centres of the various
islands, (a) no extra numerical work (e.g. Fourier analysis) is required in order to obtain
the frequencies, and (b) the ‘U-shape’ of the curveνφ(x) makes the islands more easily
detectable compared with the ‘plateaus’ of the curveνθ (x). The accuracy of this method
is O(1/N), although not as high as the accuracy of O(1/N3) of other methods (e.g. Laskar
et al 1992, Lega and Froeschlé 1997), is enough when one wishes to make a fast and
detailed exploration of the resonant phase-space structure, as we show by examples in the
following sections.

4. Detection of thin chaotic layers

While the stable periodic orbits of various multiplicities form islands of stability around
(0, 0), the unstable periodic orbits of the same multiplicities produce chaotic layers forming
resonant zones around the islands. These zones, especially those corresponding to periodic
orbits of high multiplicities, are very thin and thus not easily detectable. In particular,
the points of such chaotic zones, when seen in the usual scale, appear as forming regular
curves on the plane of the map and only a great magnification reveals their non-regular
structure. Furthermore, the use of traditional methods of detection of chaos fails to reveal
the chaotic behaviour of the orbits in such zones within a reasonable integration time (e.g. the
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convergence of the Lyapunov characteristic number of such orbits to a non-zero value may
require more than 108 iterations, Vogliset al (1997)).

We can use the fact that the curveνφ(x) changes slope abruptly at the crossing of
each thin chaotic zone, in order to locate the accurate position of such zones along the line
y = λx with a much smaller number of iterations per orbit. For this purpose, the calculation
of the derivative function dνφ/dx is needed. In figures 7(a) and (b) we plot the functions
νφ(x) and |dνφ/dx| respectively (the function dνφ/dx is evaluated by taking the successive
differences of the functionνφ(x), with step dx = 10−4 and number of iterations per orbit
N = 16 384). The abrupt peaks of the curve|dνφ/dx| in figure 7(b) mark the boundaries
of the islands seen in figure 7(a). These peaks correspond to the thin chaotic zones which
surround the islands.

5. The phase-space structrure near the last KAM curve

The study of the phase-space structure close to the boundary separating the main regular
domain in figure 3 from the surrounding large chaotic domain presents a particular interest.
Chaotic orbits with initial conditions outside, but very close to the last KAM curve, remain
‘sticky’ for a large number of periods before they diffuse into the large chaotic sea. The
phenomenon of stickiness (Contopoulos 1971, Shirts and Reinhardt 1982) is due to the
existence of partial barriers that limit the spreading of the chaotic orbits. The most important
of these barriers are the cantori (Aubry 1978, Percival 1979, Mather 1982, Aubry and Le
Daeron 1983). A cantorus is formed when a KAM torus around the island is destroyed at
a critical value of the perturbation parameter. Most important are the cantori with noble
rotation numbers (MacKayet al 1984). A noble rotation number can be represented in the
form of a continued fraction approximation:

[a0, a1, . . .] ≡ 1

a0+ 1
a1+ . . .

(15)

with ai = 1 for all i beyond somej (called the order of the noble number). Close to the
gaps of a particular noble cantorus exist islands corresponding to stable periodic orbits with
rotation numbers truncations of the continued fraction approximation of the noble rotation
number of the cantorus. These islands also constitute temporary barriers to chaotic diffusion.
In particular, they influence the form of the asymptotic curves of unstable periodic orbits
inside the cantorus. As they cross one of the gaps of the cantorus, the lobes of the asymptotic
curves avoid the islands near the gap. In doing so, they are forced to remain close to the
cantorus for a long time after they cross the cantorus for the first time (Efthymiopouloset al
1997). These lobes produce the phenomenon of stickiness.

In order to study the island structure and the formation of cantori in our example, we
calculate the angular moments in the region close to the last KAM curve. We choose
a new line of initial conditions passing through the centres of one of the1

7 islands
(x7 = 0.912 87,y7 = 1.005 21) and one of the18 islands (x8 = 1.064 97,y8 = 1.116 58).
For a = −1.3, the 1

7 island is inside the last KAM curve, while the18 island is outside the
last KAM curve, in the large chaotic sea.

In figure 8(a) we give the curveνφ(s) (s is the distance from the fixed pointx7, y7)
along the above line of initial conditions forN = 105 iterations per orbit and scanning step
ds = 10−5. Both the rotation numbers of the islands and the frequencies of the invariant
tori between them are determined very efficiently with the method described in section 3.

Two domains are distinguished in figure 8(a) separated roughly ats ≈ 0.047. Fors
greater than about 0.047 we have a large chaotic domain. For most initial conditions in



2924 N Voglis and C Efthymiopoulos

Figure 7. (a) νφ(x) along the scanning liney = λx for 0.5 6 x 6 0.9 and (b) the derivative
function |dνφ/dx| along the same line. The peaks of the derivative function mark the positions
of thin chaotic layers.

this domain the momentνφ tends to a constant valueνφ ≈ 0.055, but there is also some
dispersion around this value (which decreases as the number of iterations increases). The
fact that the momentνφ tends to a constant value indicates that this is aconnectedchaotic
domain. We can also see some islands of stability which are embedded in the chaotic
domain, e.g. the islands322, 7

51 and 2
15.
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Figure 8. (a) The curveνφ , for a = −1.3 as a function of the distances from the period 7
stable fixed point (x7 = 0.912 87,y7 = 1.005 21) along the line joining this point with the period
8 stable fixed point (x8 = 1.064 97,y8 = 1.116 58). The rotation numbers of some islands are
marked, (b) a detail of figure 9(a). The points A and B belong to KAM segments and give the
positions of the noble tori [7, 4, 1, 1, . . .] and [7, 3, 1, 1, . . .] respectively.

The dispersion around the constant value is not due exclusively to statistical fluctuations,
but also to the phenomenon of stickiness. Namely, as long as an orbit remains ‘sticky’
close to the boundary separating the chaotic from the regular domain, the momentνφ takes
a transient value deviating from the constant value characteristic of the chaotic domain.
Nevertheless, forall the orbits belonging to the connected chaotic domain,νφ tends to the
same value after a large enough number of iterations.

On the other hand, fors smaller than about 0.047 the curveνφ(s) consists of: (a)
segments that belong to a smoothly decreasing curve, corresponding to KAM tori (KAM-
segments), and (b) U-shaped parts corresponding to islands. The islands form Farey
sequences. For example, in figures 8(a) and (b) (detail of 8(a)), we see the islands
with rotation numbers forming the sequence1

7,
4

29,
5
36,

9
65,

14
101,

23
166, . . . . These numbers

are rational truncations of the continued fraction approximation of the noble number
[7, 4, 1, 1, . . .] = 0.138 570 516 109 9319. Similarly, the rotation numbers1

7, 3
22, 4

29, 7
51, 11

80,
18
131, are rational truncations of the noble number [7, 3, 1, 1, . . .] = 0.137 430 725 938 6117.
Other islands, of which the rotation numbers are not marked in figures 8(a) and (b), belong
to Farey sequences of higher-order noble numbers.

The straight lines corresponding to the noble numbers [7, 4, 1, 1, . . .] and [7, 3, 1, 1, . . .]
in figure 8(b) intersect the curveνφ several times. The intersections at the U-shapes of
islands have no special meaning. The intersections of the two lines with the curveνφ at the
points A and B belong to KAM segments (in fact near B there is a small KAM segment
similar to that around A). These points mark the positions of the invariant tori with the
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Figure 9. (a) Same as figure 8(a), for a = −1.31. (b) Same as figure 8(b) for a = −1.31. The
line of the noble [7, 3, 1, 1, . . .] has no intersection with KAM segments of the curveνφ after
the island11

80.

noble rotation numbers [7, 4, 1, 1, . . .] (point A) and [7, 3, 1, 1, . . .]. Thus, both these tori
exist for a = −1.3.

As we increase the perturbation, the noble tori are consecutively destroyed and become
cantori. Thus, fora = −1.31, the noble torus [7, 3, 1, 1, . . .] has been destroyed and has
become a cantorus. The destruction of the noble torus [7, 3, 1, 1, . . .] can be concluded
from figures 9(a) and (b). In figure 9(a), we see that the connected chaotic domain has
moved further to the left. Namely, there is a chaotic zone to theleft of the island11

80 where
the momentνφ has values in the constant level characteristic of the connected chaotic
domain. The fact that there is communication of this chaotic zone with the large chaotic
domain implies that no torus exists between11

80 and the large chaotic domain. In particular,
the noble torus [7, 3, 1, 1, . . .] is destroyed. Due to the destruction of the noble torus, in
figure 9(b) there is no intersection of the straight line of the number [7, 3, 1, 1, . . .] with a
KAM segment of the curveνφ to the right of the island11

80 island, similar to the point A of
the same figure.

In the same way, fora = −1.32, figure 10, the large chaotic domain from the right
moves further to the left, including now the island429. In between the rationals429 and
11
80 we have the higher-order noble [7, 3, 1, 2, . . .]. Thus, fora = −1.32, the higher-order
noble torus [7, 3, 1, 2, 1, 1, . . .] is destroyed. But besides the expansion of the right chaotic
domain, we observe also the formation of a chaotic zone to the left, close to the island1

7
(region C). This zone exists also fora = −1.31 (figure 9(a)), but there it is smaller. As
the perturbation increases, the width of this zone increases. This zone is separated from
the outer large chaotic domain by invariant tori. As a result, the constant values ofνφ are
different in the two zones.
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Figure 10. Same as figure 9(a), for a = −1.32.

The appearance of chaotic zones are created inside the last KAM curve and the expansion
of chaos both from inside outwards and from outside inwards, is studied in detail in another
paper (Efthymiopouloset al 1997).

However, for a large enough perturbation, all the nobli tori are eventually destroyed and
the chaotic zones between them communicate to form a large connected domain.

6. Conclusions

We have defined the rotation anglesθ , the twist anglesφ, and their respective angular
spectra and momentsνθ andνφ in a model two-dimensional map. Our conclusions are as
follows.

(1) The angular spectra are invariant along one orbit, regular or chaotic. As a
consequence, the angular moments can be defined in a uniform way both for regular and
chaotic orbits (while the rotation number is defined only for regular orbits).

(2) The mean valueνφ is equal to: (a) the mean valueνθ (the rotation number) for
regular invariant curves around the centre and (b) to the differenceνθ − νκ for regular
curves inside higher-order islands of stability, whereνθ = n/m is the rotation number of
the corresponding stable periodic orbit andνκ is the higher-order rotation number around
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the stable periodic orbit. Both of these moments can be evaluated without the need to
know the centres of the islands (the points of the corresponding stable periodic orbits). The
accuracy of the evaluation of the angular moments is O(1/N).

(3) The peaks of the derivative function dνφ/dx give the positions of thin chaotic layers.
The convergence of this method, depending on the sensitivity wanted, is between 103 and
105 iterations per orbit.

(4) We explored the phase-space structure close to the last KAM boundary by using the
angular moments. We located: (a) the islands forming Farey sequences, (b) the tori with
noble rotation numbers and (c) the various chaotic zones formed inside and outside the last
KAM curve.

(5) A connected chaotic domain corresponds to a constant mean valueνφ with dispersion
decreasing as the number of iterations per orbit increases. When two (or more) chaotic
zones are separated by KAM tori, then the constant values ofνφ in these chaotic zones are
different. But when the tori are destroyed and the two zones communicate, then the values
of νφ in both zones are equalized.
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